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A rising cloud of heated gas (thermal) is capable of carrying to considerable distances 
various aerosol impurities that are present in the ground layer of the atmosphere (dust, 
soot). Transfer of large amounts of finely dispersed particles to the upper atmospheric 
layers can have consequences of a global character [I], and, therefore, mathematical simula- 
tion of such processes acquires great importance. 

The basic stages in the evolution of a floating cloud have been studied fairly thorough- 
ly by using numerical integration. Thus, the formation of a thermal and the subsequent de- 
velopment of a vortex structure as a result of a point explosion in a compressible atmosphere 
were considered in [2]. A numerical solution of the equations of an incompressible medium 
in the Boussinesq approximation was obtained in [3, 4J, while the initial and the self-similar 
parts of the motion, as well as the hovering stage, were calculated separately. The turbu- 
lent character of the flow was taken into account by introducing the constant effective 
transport coefficients, the values of which were determined from the correspondence between 
the theoretical integral characteristics - the self-similar coordinate of the upper edge and 
the expansion angle of the cloud - and their experimental values [3, 5]. Many problems 
were solved on the basis of the relationships derived in [3, 4], i n particular, the problem 
of transfer to the stratosphere of passively transported (without influence on the gas mo- 
tion) impurities. 

Comparison between theoretical and experimental data on the law of ascent of the upper 
edge of a thermal was then used in [6-8] for determining the turbulent exchange coefficients 
in the case of a compressible medium, where the atmospheric density changes greatly with alti- 
tude due to the gravimetric compressibility of air. It was demonstrated in [6, 7] that the 
rise dynamics is described by two parameters - the Rayleigh (or Grashof) number and the ini- 
tial height of the thermal. The relationships derived made it possible to perform a com- 
plete calculation of all stages in the evolution of thermal in the nonuniform, compressible 
atmosphere [6, 8]. 

The model of a compressible medium was used in [9] for investigating the transfer to 
the stratosphere of aerosol particles, initially located in a cylindrical ground layer, by a 
hot thermal. Data on the degree of capture of particles from the ground region and the per- 
centage of impurities reaching the stratosphere were obtained, and the results were compared 
with the estimates given in [i]. In describing the dispersed phase, its active influence on 
the gas due to its weight and thermal characteristics was taken into account. Such an im- 
purity does not have its own pressure and, generally, cannot be considered as an additional 
gas component. 

The present paper examines in detail the vertical transfer of an active impurity by an 
initially dusty, supernatant thermal. The gravimetric and energy mechanisms of interaction 
between phases and their relative effect on the rise of a floating cloud are analyzed for 
various fill factors characterizing the degree to which a thermal is filled with the impurity. 
The scope of applicability of the one-velocity model is discussed, and the characteristics of 
motion of a thermal with a high initial fill factor are considered. The limits of validity 
of the passive impurity approximation are examined on the basis of the results obtained. 

i. Assume that, at the initial instant of time, a stationary spherical cloud of hot gas 
containing finely dispersed particles which are distributed throughout its volume is located 
above a flat horizontal surface. The continual approach is used for describing the carrier 
and the dispersed phases. Moreover, the particles are considered to be sufficiently small 
for the characteristictimes of velocity and temperature relaxation to be much shorter than 
the time of convection development~(Ro/g) I/~ (R 0 is the initial radius of the thermal, and g 
is the acceleration due to gravity). Within the framework of Stokes' law of resistance, the 
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time of velocity relaxation for a single particle is of the order of d2/18ve (d is the parti- 
cle diameter, v is the gas viscosity, and e =91o/90 is the ratio of the actual densities of 

the gas and the impurity), which is comparable to the time of convection development for 

dNd.----(18ve R~Jg) H~ . For R 0 ~ i0 a m, v = 0.15 cm2/sec, and e = 10 -a, we have d, ~ 1 mm. 

The time of temperature relaxation of particles is equal to d2/4• (• is the thermal difa 

fusivity of the gas); its order of magnitude is equal to that of the equalization time of 
phase velocities. For particles whose dimensions are considerably smaller than d, (d <~ i0- 
100 ~m), we can use the instantaneous relaxation hypothesis [I0]. 

We introduce dimensionless variables, using, for the measuring scales of pressure, 
density, and temperature, the values of these parameters in the unperturbed atmosphere at the 
b a s e  s u r f a c e ,  P0,  P l o ,  and  T O ( P o  : 91oR~ and  R ~ i s  t h e  g a s  c o n s t a n t ) .  M o r e o v e r ,  a s  i n  

[ 6 ,  7 ] ,  we c h o o s e  a f i x e d  l i n e a r  s c a l e  L o f  t h e  o r d e r  o f  t h e  c h a r a c t e r i s t i c  c l o u d  r a d i u s  
( t h e  v e l o c i t y  and  t i m e  s c a l e s  a r e  (Lg) 1/2 and  (L/g) 1/2 , r e s p e c t i v e l y ) ,  and  we r e d u c e  a l l  t h e  

f i n a l  r e s u l t s  t o  a f o r m  i n d e p e n d e n t  o f  a s p e c i f i c  L v a l u e .  The t r a n s i e n t  a x i s y m m e t r i c  mo- 
t i o n  o f  t h e  t w o - p h a s e  s y s t e m  i s  c o n s i d e r e d  i n  a c y l i n d r i c a l  c o o r d i n a t e  s y s t e m  ( r ,  z ) ,  t h e  
o r i g i n  o f  w h i c h  i s  l o c a t e d  a t  t h e  b a s e  s u r f a c e  u n d e r  t h e  c e n t e r  o f  t h e  t h e r m a l .  The c a r r i e r  
medium i s  d e s c r i b e d  by  t h e  e q u a t i o n s  o f  a v i s c o u s ,  c o m p r e s s i b l e  g a s ,  w h i l e  t h e  d i s p e r s e d  
i m p u r i t y  i s  d e s c r i b e d  by t h e  c o n v e c t i v e  d i f f u s i o n  e q u a t i o n  

dp 
a - F = - - 9  d ivU,  P = P l  T, P = P I + P 2 ;  ( 1 . 1 )  

du _ ~ V P + ~ [ A U + - ~ V ( d i v U ) ] + V g ;  97/ = yM" (1.2) 

dT 
(91 + YiP2) ~T : -  - -  (Y - -  l) P div U + ~ A T; ( 1 . 3 )  

opt 
a-T + div(gcU) = Ac, c = 92/P, (1.4) 

d O I O 0 0 2 
U : ( u , v ) ,  g : ( 0 , - - t ) ,  d t ~ a t + ( U V ) ,  A = 7 ~ r ~ + a z - - - ~ .  

H e r e ,  t h e  s u b s c r i p t  1 p e r t a i n s  t o  t h e  g a s ,  s u b s c r i p t  2 p e r t a i n s  t o  t h e  i m p u r i t y ,  ?a = c2/c~ 
is the ratio of the specific heat values of the phases, while the other symbols involve the 
commonly used notation (see [9]). The turbulent character of the flow is accounted for by 
introducing the constant effechive coefficients of dynamic viscosity and thermal conductivity, 
the choice of which is substantiated below. The heat transfer equation (1.3) indicates that 
the volumetric specific heat of the entire mixture increases due to the presence of particles 
in comparison with that of a pure gas (the term YIP2 is added). 

The initial and the boundary conditions are assigned as follows: 

t : 0: U : 0, T : Ta + Oo exp [ - - ( r  ~ + (z - -  H ) 2 ) / ~ 2 ] ,  

P : Pa, P2 : M21 exp [ - - ( r  2 + (z - -  H)2)/R~],  91 = P / T ,  p = 91 Jr- 92; 

r - -  0: u = 0, a~/ar  = o, q~ = {v, P ,  T,  e}; 

(1.5) 

(1.6) 

z = 0: U = 0, aT/az  = 0, oc/az = o; (1.7) 

r 2 @ z 2 - - +  c o :  U = O, T : -  T a,  P : P a ,  c : O, (l.S) 

and R and H are the initial values of the radius and the height of the thermal; the quantity 
M21 characterizes the degree to which the cloud is filled with the impurity; as in [9], the 
following relationships are used for the parameters of the unperturbed atmosphere: 

I (d: o ) T~ \ dz -}- (? - -  t )  M 2 : k,  d---7- ~ - -  ?M~ (P~ = P J T a ) ,  
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which correspond to the international standard atmosphere (Pa is the atmospheric density, 
k = N2L/g is the stratification parameter, and N 2 = const = 1.2"10 -4 sec -2 up to altitudes 

of 10-16 km). 

The system of equations (1.1)-(1.8) was solved numerically by using the implicit three- 
layer scheme of coordinate splitting [6], which constitutes a modification of the method 
used in [II] and is characterized by superior conservative properties. Nonuniform, adjust- 
able 40 • 50 grids were used, while the Courant number increased from 0.25-0.5 at the start 
of rise to 3.5-4 at the late stages of evolution of the thermal. All the results given 
below are obtained for y = 1.4, M = 0.3, and k = 1.22"10 -2 , which correspond to the actual 
parameters of an unperturbed atmosphere for L = 103 m, T o = 273 K, and P0 = 1 atm. 

2. The initial conditions (1.5), along with the altitude of the cloud's center H, com- 
prise the parameters R, 8o, and M21, which determine the initial state of the cloud. From 
results, we most often know only the integral characteristics of a thermal - the total heat 
energy Q0 expended on its formation (which amounts to a certain percentage of the total ex- 
plosion energy Qx: Q0 = aQx , a = 1 for powder charges, and a ~ 0.35 for nuclear explosions 

[i, 3, 5]) and the approximate total mass of the impurity M E contained within the cloud 

volume, as well as the overheating AT, at the center of the thermal. Therefore, it is advis- 
able to use the dimensionless parameters [o = Qo/2~p1oCp To L3, m =31z/ploL 3 , and @, = AT,/To, that 

correspond to the characteristics as the determining parameters and express the R, 80, and 
M21 quantities in terms of the former in the following manner. 

The radius of a pure-gas thermal with the stored heat I 0 can be found with respect to 
the initial temperature field (1.5) and the overheat (determined from experiments), assuming 
that 80 = 8, and solving numerically the following equation with respect to R: 

Pa 0 
I~  i i  ~ r d r d z ,  

O 0  O 0  

(2.1) 

where 0----T--Ta--O, exp[--(r2-~(z--H)2)/R 2] is the overheat of the medium in the thermal. This 
approach was used in [6, 7], while the dimensions of the thermal obtained for different I 0 
values corresponded fairly closely to the empirical relationships. 

The presence of a dispersed impurity in a thermal causes a part of the heat to be ex- 
pended on the heating of particles, and the energy I 0 is distributed between the gas and the 
impurity: 

I o = Ig  + Ip,  

Ig =. plOr dr dz, Ip ~ -~ peOr dr dz. (2.2) 
O 0  O 0  
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Naturally, the dimensions and the temperature of a dusty thermal will differ from these 
values in a pure-gas cloud with the energy I 0. In order to determine these values, it is 
generally necessary to consider in detail the process whereby a dusty thermal is formed, 
which constitutes a complex problem. We assume here that the radii of a dusty and a pure- 
gas cloud are approximately equal, but the temperature of the thermal is reduced from 8, to 
80 due to the presence of the impurity. Therefore, the value of R is calculated, as before, 
by means of relationship (2.1) with respect to the stored heat I 0 and the characteristic 
overheat 8, (the presence of the impurity is neglected). Using (1.5), we determine the 
parameter M21 with respect to the assigned total amount of the impurity m, and then, having 
solved numerically the integral equation (2.2), we determine the initial overheat 80. This 
procedure can readily be modified when the initial energy I 0 and the radius of the dusty 
thermal are known from experiments, but the overheat value 8~ is not known. 

The calculation results pertaining to the initial state of the thermal can be conven- 
iently interpreted by means of two additional parameters that characterize the heat balance 
in the thermal and the forces acting O n it. 

The capacity of the impurity to slore a part of the heat released is described by the 
parameter ~ = c~MzTo/Qo = % m l 2 ~ T I  o , which is the ratio of the heat absorbed by the total 

amount of impurity as its temperature increases by T O to the total heat energy of the ther- 
mal Q0. Introduction of the parameter $ makes it possible to describe uniquely the heat 
distribution between the phases. Figure 1 illustrates the calculation of the initial state 
of a thermal in a wide range of parameters, 0~m~10; 0~71~I0; 0,I<10<2,7 , for H = 
1.56 and 8, = 21 (at T O = 273 K, this value corresponds to the experimentally determined 
temperature in the thermal [I]) in the form of the percentages of energ 7 stored by the gas 
Og = IgH o and by particles os) = Ip/[o as functions of ~ (curves 1 and 2). This figure also 
provides the ratio of the temperature of a dusty thermal to the temperature of a pure-gas 
thermal O' = 0 o / 0  , (curve 3). 

Let us now consider the forces acting on the gas and on the impurity. We distinguish 
between the total weight of particles F_ and the boundary F+, which is equal to the differ- 
ence between the Archimedes' force and the gas weight. In terms of dimensionless variables, 
F- = m, and 

P a  (1-- Tab t 91(T-- Ta)(~V. ( 2 . 3 )  

If the initial height of the thermal is not excessive, we assume that T a z 1 (for the largest 

height value used in the calculations, H = 6, the error entailed by this approximation did 
not exceed 15%), and we find F+ = 2~Ig = 2~Io~g(~ ). 

The gravimetric action of the impurity is characterized by the parameter a, which is 
equal to the ratio of the weight of particles to the buoyancy: 

= F_/F+ =- m / 2 a I g  = m/2aIoag .  
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The relationship between ~ and 8 is given by ~TI = v~lag(~) Figure 1 shows the depen- 
dences of the function ~' ~ =?i on the parameter ~ (curve 4). An increase in the impurity 
fill factor of the cloud (an increase in ~) causes a reduction of the buoyancy F+ due to the 
smaller amount of heat stored by the gas and the simultaneous increase in the weight of 
particles. For a sufficiently large fill factor, the forces F+ and F_ are equalized, which 

corresponds to zero initial buoyancy and the critical value a, = i. The critical value of 
the parameter ~ = ~, is determined by solving the equation ?i = ?~.:ag(~.) . Thus, for ~I = 

i, we have $, z 0.34. It should be noted that, if the particles did not affect the force 
F+ as a result of removal of some of the heat from the gas, the critical value 8, would be 
equal to 6. = ?-~ ~ 0,71 Consequently, the thermal action of the impurity reduces the cri- 

tical fill factor by roughly one-half. 

3. As was mentioned above, a relationship has been established in [6, 7] which makes 
it possible to describe uniquely the self-similar coordinate of the upper edge Se of a gas 
thermal rising in an atmosphere which has variable density and transports a passive impurity. 
It has the form ~H', Gr) : F(H')G(Gr), where ~e: (dze~tl/2)I~ I/4, and Or = Re2/0 , while the 

functions F and G assign the dependence of $e on the dimensionless initial height and the 
Grashof number. It would be of interest to compare this relationship with the velocity of 
self-similar motion of a dusty thermal. 

If the aerosol impurity in a dusty thermal does not affect the gas motion and the cloud 
rise (passive impurity), the above relationship between ge and Gr holds. The dimensionless 
variables ~e and Gr should be determined with respect to the amount of the heat energy stored 
only by the gas 

~e(H, Gr') = F (H') G (Or'); (3.1) 
t 

~e : (dz~/dy2) 17 I/4, O r '  = 13e21~. (3.2) 

Comparing the coordinate of the upper edge for a thermal transporting an active impurity 
(see (1.1)-(1.8)) with the value of $$ calculated by means of (3.1), we can form an idea 
of the interaction between the gaseous and the dispersed phases during the rise. Figure 
2 shows the results of calculations of the motion of a dusty thermal in the form of a 

~(Gr') relationship. The thermal is initially located at the altitude H = 1.56 (the value 
of H' appearing in (3.1) is equal t o ' H '  = ~ M ~ H = 0 , 2 ) ' :  The ratio of the specific heat 

values of the phase was assumed to be YI = i, since the specific heat of many solid sub- 
stances (dust, soot, or sand) is close to the specific heat of air under normal conditions. 

Moreover, it was assumed that Pr = Sc = i. The solid curve in Fig. 2 corresponds to the rise 
of a gas thermal (see [6, 7]) and is described by relationship (3.1). The points 1-6 were 
obtained for a dusty thermal with the energy I 0 = 0.68 for ~ = 0.i; 0.2; 0.3; 0.5; 0.7; 0.95, 
respectively. In the case of a low impurity fill factor of the cloud, when the value of 
does not exceed ~ 0 = 0.4, the self-similar coordinates of the upper edges of a dusty and~ a 
gas thermal coincide with a high degree of accuracy in the 250 ~Gr'~2000 range: The 

points I-3 lle on the solid curve. A further increase in the amount of impurity (~ > ~c) 

causes the cloud ascent to slow down due to the increase in the impurity weight (points 
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4-6). Similar results are obtained for fill factors = = 0.2 and 0.5 and other values of the 
initially stored heatI0: Points 7 and 8 correspond to I 0 = 0.34, while points 9 and 10 
correspond to I 0 = 2.7. 

Let us now investigate in detail the mechanism whereby an impurity affects the gas mo- 
tion during the rise of a dusty thermal. We shall use ~(Gr') as the basic relationship for 
a cloud with I 0 = 0.68, 71 = i, H' = 0.2, and ~ = 0.5 (in this, 8 = 0,2, og = 0.57, and Ig = 
0.39 - see points 4 in Fig. 2) and compare it with similar relationships, derived for dif- 
ferent variations of the parameters determining the interaction between phases. In the 
basic variant, the fill factor of the thermal is close to s0, and deviations from (3.1) only 
begin to manifest themselves. For small values of Gr', the thermal rises more slowly 
than a pure-gas thermal, while it rises faster for large values of Gr' (compare in Fig. 2 the 
solid curve with the dashed curve passing through points 4). 

The results of calculations of the motion of gas and dusty thermals are given in Fig. 3 
for the basic variant at Gr' = 1650 with subsequent allowances for the gravimetric and therm- 
ic interaction between phases. The coordinates T I/~ -- (t/t~)I/24o and Z e = (ze -- H)/lgl/41/2ts (t s = 

k -I/2 is the characteristic rise time of the thermal), which do not depend on the linear 
scale, are used. The dynamics of the rise of a pure-gas thermal with the energy Ig contain- 
ing a passive impurity (it is assumed that P2 = 0 in the equations of motion and transport) 
is represented by curve i. The slope of the rectilinear segment of the curve is equal to the 
self-similar coordinate ~, amounting to 4.45 in this case. 

In order to take into account only the gravimetric effect of an active impurity, we con- 
sider a cloud whose initial parameters correspond to the basic variant, but in calculating 
its evolution, we consider that the specific heat of particles is equal to zero (YI = 0 in 
(1.3)). It can be said that the dispersed phase is passive in the sense of heat transfer, 
but active with regard to its gravimetric action. The dynamics of the rise of such a thermal 
is represented in Fig. 3 by curve 2; ~' = 3.40 e 

Curve 3 was obtained by calculations based on the parameters of the basic variant, in- 
volving, however, a small initial amount of the impurity (= = 3.3.10 -2 ) and a large specific 
heat of particles (YI = 15). The gravimetric effect of the impurity is insignificant, but 
the initial, effective specific heat of the medium remains unchanged due to the special 
choice of the YI value that ensures the same value of the parameter ~ ~ y1~, as that in the 
basic variant. Thus, the impurity is active with regard to its thermal effect, but it does 
not exert gravimetric action: For curve 3, $$ = 5.10. 

Finally, the results of calculations of the basic variants, where particles exert both 
gravimetric and thermal action, are described by curve 4 for $' = 4 75 (the top point 4 in e 
Fig. 2). 

By comparing curves 1-4 in Fig. 3, we can @raw conclusions concerning the relative con- 
tribution of various mechanisms of interaction between phases that determine the trends in 
the rise of a thermal. At the initial stage of motion, the impurity is concentrated at the 
cloud center; its concentration is high, which delays the stage of acceleration of a dusty 
thermal (curves 2 and 4) in comparison with a pure-gas thermal (i). At the self-similar 
stage, the impurity not engaged in heat exchange with the gas retards considerably the rise 
(2), while faster ascending flow (3) occurs in the presence of particles that:store heat but 
do not possess weight. These factors influence the rise of a thermal in opposite ways: On 
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the one hand, the impurity increases the weight of the cloud and slows down its motion, 
and, on the other, as it transfers heat to the gas, it hinders its cooling and promotes its 
rise. The velocity of a dusty thermal depends on these factors. In the case of a small 
fill factor (s < s0), they are mutually compensated, which explains the fact that points 
1-3 coincide with the solid curve in Fig. 2. With an increase in the fill factor (~ > ~0), 
the heat action of the impurity is no longer sufficient to compensate for its gravimetric 
effect, and the cloud slows down (points 5 and 6 in Fig. 2). In the transitional region 
(s ~ s0; see points 4 in Fig. 2), the predominance of the gravimetric or the heat mechanism 
of action depends on the convection intensity, which is characterized by the Grashof number. 
If, for Gr' = 1650, the ascent velocity of a dusty thermal along the self-similar segment 
is higher than that of a pure-gas thermal (compare the slopes of curves 1 and 4 in Fig. 3), 
then, a reverse pattern is observed: The mechanisms of interaction between phases," $$ = 3.55, 
2.20, 4.05, 3.20, "kick in" successively in the above case. This means that the effects con- 
nected with heat transfer from the impurity to the carrier gas at the self-similar stage of 
rise of the thermal are more strongly pronounced with an increase in Gr'. 

4. The coefficients of turbulent transport introduced in (1.2)-(1.4) are determined 
not only by the characteristics of the medium (as in the laminar case), but also by the char- 
acter of the flow and, therefore, additional data must be used for determining the values of 
these characteristics. As was shown in [3]-[5], the coefficients can be found by matching 
the theoretical law of ascent of the upper edge with the experimental relationships in the 
case of a pure-gms thermal. The difficulty in extending this approach to the case of a dusty 
thermal is due to a lack of necessary experimental data on the effect of the impurity on the 
motion dynamics. 

For the results given in paragraph 3, it is clear that, for fill factors that are not 
excessive, the ascent dynamics of a dusty thermal in a nonuniform, compressible medium is 
described by relationship (3.1), obtined earlier for pure-gas thermals. It would seem natu- 
ral to use (3.1) also for determining the turbulent transport coefficient for a thermal con- 
taining particles. Thus, the energy stored in the gas is to be determined with respect to 
the known total heat energy of the cloud I 0, the mass of the impurity contained in the cloud, 
and the specific heat of the impurity. If we know the initial height H of the cloud' center, 
we can find the value of Gr' corresponding to $' using the functions F and G from [6 7] e, 

that appear in (3.1). We borrowed the experimental value $' = = e ~, 4.35 given in [3, 5]. 
If more complete experimental data are available, the procedure of determining the transport 
coefficient can be refined by comparing the experimental value of g~ with the relationships 
in Fig. 2; the values of Pr and Sc are assumed to be equal to unity, which is justified for a 
well-developed turbulent flow. 

5. The ascent of a dusty thermal for s < s 0 is similar to that investigated in [6, 7] 
for a thermal cloud carrying a passive impurity. At the initial stage, a toroida! vortex 
flow is formed, and the thermal assumes the characteristic mushroom shape. A multivortex con- 
figuration developes at the hovering stage, and the thermal performs oscillations , which are 
damped in time, about the stabilization level. 

For %<~<~. , the presence of an active impurity produces certain peculiarities in 
the thermal ascent process. Thus, for s = 0.56 (I 0 = 0.68, H = 1.56, ~l = i), the concentra- 
tion of particles at the center of the thermal is rather high at the initial stage, the heavy 
core hinders the gas rise, and there is virtually no convection in this region. A toroidal, 
vortex flow is formed at the periphery of the thermal, Where there are few perticles,-so that 
the heated gas rises. The three-dimensional distributions of excess for t = 1.6 (the iso- 
therms 8 = const are on the left, and the velocity field and the P2 = const lines are on the 
right); here and elsewhere, the isolines 1-5 are plotted at intervals of 1/6 of the maximum 
value, 8 m = 2.2 and P2m = 0.73 (1/6, 2/6, etc., respectively). In time, convection and dif- 
fusion transport reduce the impurity concentration at the core, the ascending gas flow in- 
volves the entire axial region, and the subsequent evolution of the vortex structure is simi- 
lar to that of a gas cloud. At the rise stage (Fig. 4b: t = 6.7, 8 m = 0.8, P2m = 0.16), the 
form of the isolines differs for some time from that obtained in [6, 8] for a non-dusty ther- 
mal:-The isolines are more stretched in the vertical direction. These differences are then 
smoothed out, and the concentration of particles is so low at the hovering stage that it 
does not exert~an appreciable effect on the process. 

The effect of the impurity becomes even greater for a cloud fill factor close to its 
critical value. The structure of the thermal for s = 0.95 (I 0 = 0.68, H = 1.56, 71 = I) is 
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shown in Fig. 5a it = 3.9, e m = i, and p2m = 0.68). In this case, the weight of particles 
in the cloud core is so great that the central part of the thermal descends to the surface. 
The ascending flow in the case of such fill factor cannot prevent the descending motion of 
the impurity and its ~ccumulation at the surface. After the settling process has ended, 
the toroidal, vortex motion gradually draws upward particles from the surface zone and car- 
ries the impurity to higher altitudes (Fig. 5b: t = IZ.8, 8 m = 0.26, P2m = 0.i). It should 
be mentioned that the results obtained for ~ ~~ ~, are qualitative in character, since the 
interaction between the impurity and the surface during precipitation (for instance, non-~ , 
elastic impact of particles on a flat surface) must, be considered on the basis of the more 
complete two-velocity model of the medium(as was done, for instance, in [12]). Moreover, 
if theopposing forces acting on the medium are balanced, and convection occurs more slowly, 
the single-velocity model can be used only for very fine particles (since the condition of 
its applicability stipulates low terminal velocity of a single particle in comparison with 
the convective velocity of the gas). 

Thus, in the case of a low impurity fill factor in the thermal: (a < s0) , the rise of 
a dusty cloud occurs in the same way as that of a thermal which has the stored heat Ig < I 0 ' 
and transports a passive impurity. In other words, the passive impurity approximation holds 
if the total impurity weight does not exceed 40% of the buoyancy force acting on the gas. 
During the rise of a dusty thermal with a large fill factor, the. characteristics that mani- 
fest themselves are related to the weight of particles (cloud deformation, stretching of 
the initial stage, and precipitation of impurity particles on the ground surface and their 
thermic characteristics (changes in the effective specific heat of the medium and slower 
cooling of the thermal). 
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